向量(Vector)
定义
向量
是具有
n
n
n
个相互独立的维度的对象。
向量的模
:向量的长度。记作
∣
a
⃗
∣
|\vec{a}|
∣
a
∣
或
∥
a
⃗
∥
\|\vec{a}\|
∥
a
∥
。
单位向量
:长度为1的向量。
计算
x
⃗
=
(
x
1
,
x
2
,
⋯
,
x
n
)
T
\vec{x} = (x_1,x_2,\cdots,x_n)^T
x
=
(
x
1
,
x
2
,
⋯
,
x
n
)
T
y
⃗
=
(
y
1
,
y
2
,
⋯
,
y
n
)
T
\vec{y} = (y_1,y_2,\cdots,y_n)^T
y
=
(
y
1
,
y
2
,
⋯
,
y
n
)
T
运算
例子
加减
x
⃗
±
y
⃗
=
(
x
1
±
y
1
,
⋯
,
x
n
±
y
n
)
T
\vec{x}±\vec{y}=(x_1±y_1,\cdots,x_n±y_n)^T
x
±
y
=
(
x
1
±
y
1
,
⋯
,
x
n
±
y
n
)
T
数乘
λ
x
⃗
=
(
λ
x
1
,
⋯
,
λ
x
n
)
T
λ\vec{x}=(λx_1,\cdots,λx_n)^T
λ
x
=
(
λ
x
1
,
⋯
,
λ
x
n
)
T
内积
x
⃗
∙
y
⃗
=
(
x
⃗
,
y
⃗
)
=
∣
x
⃗
∣
⋅
∣
y
⃗
∣
cos
θ
=
x
T
y
=
y
T
x
=
x
1
y
1
+
x
2
y
2
+
⋯
+
x
n
y
n
\vec{x} \bullet \vec{y} = (\vec{x},\vec{y}) = \vert\vec{x}\vert ⋅ \vert\vec{y}\vert \cosθ = x^Ty = y^Tx = x_1y_1 + x_2y_2 + \cdots + x_ny_n
x
∙
y
=
(
x
,
y
)
=
∣
x
∣
⋅
∣
y
∣
cos
θ
=
x
T
y
=
y
T
x
=
x
1
y
1
+
x
2
y
2
+
⋯
+
x
n
y
n
外积
∣
a
⃗
⋅
b
⃗
∣
=
∣
a
⃗
∣
⋅
∣
b
⃗
∣
sin
θ
\vert\vec{a} ⋅ \vec{b}\vert = \vert\vec{a}\vert ⋅ \vert\vec{b}\vert \sinθ
∣
a
⋅
b
∣
=
∣
a
∣
⋅
∣
b
∣
sin
θ
模
∣
a
⃗
∣
=
∥
a
⃗
∥
=
a
⃗
∙
a
⃗
=
x
1
2
+
x
2
2
+
⋯
+
x
n
2
\vert\vec{a}\vert = \|\vec{a}\| = \sqrt{\vec{a} \bullet \vec{a}} = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}
∣
a
∣
=
∥
a
∥
=
a
∙
a
=
x
1
2
+
x
2
2
+
⋯
+
x
n
2