矩阵函数

定义

f(x)=k=0ckxkf(x) = \sum_{k=0}^{∞} c_k x^k

幂级数定义法

ACn×nA∈C^{n×n}{ck}\{ c_k \}是复数列,则称

f(A)=k=0ckAk=c0E+c1A+c2A2+f(A) = \sum_{k=0}^{∞} c_k A^k = c_0E + c_1A + c_2A^2 + \cdots

为方阵AA幂级数(明显还是一个矩阵)。

其缺点在于定义为无穷个矩阵相加,难于计算。若能再将无穷个矩阵相加合理归纳,则可解决此问题。

设幂级数f(x)f(x)的收敛半径是rr

例1

11x=1+x+x2+,   x<1\dfrac{1}{1-x} = 1 + x + x^2 + \cdots, \ \ \ |x|<1

(EA)1=E+A+A2+,   ρ(A)<1(E-A)^{-1} = E + A + A^2 + \cdots, \ \ \ ρ(A)<1

例2

cosx=1x22!+x44!x66!+,   x\cos x = 1 - \dfrac{x^2}{2!} + \dfrac{x^4}{4!} - \dfrac{x^6}{6!} + \cdots, \ \ \ ∀x

nn阶方阵满足A2=AA^2 = A,求cosAcos A

cosA=E12!A2+14!A416!A6+=E12!A+14!A16!A+=E+A(12!+14!16!+)=E+A(cos11)\begin{array}{l} \cos A \\\\ \\\\ \\\\ \\\\ \end{array} \begin{array}{l} = E - \dfrac{1}{2!}A^2 + \dfrac{1}{4!}A^4 - \dfrac{1}{6!}A^6 + \cdots \\\\ = E - \dfrac{1}{2!}A + \dfrac{1}{4!}A - \dfrac{1}{6!}A + \cdots \\\\ = E + A(-\dfrac{1}{2!} + \dfrac{1}{4!} - \dfrac{1}{6!} + \cdots) \\\\ = E + A(\cos 1 - 1) \end{array}

Jordan定义法

nn阶方阵AA的Jordan矩阵为J=[J1J2Js]J = \left[\begin{array}{c} J_1 \\ & J_2 \\ && \ddots \\ &&& J_s \end{array}\right]sns≤nJiJ_i为Jordan块,明显有P1AP=JP^{-1}AP = J,则A=PJP1A = PJP^{-1}

f(A)=c0E+c1A+c2A2+=c0PEP1+c1PJP1+c2PJ2P1+=P(c0E+c1J+c2J2+)P1=Pf(J)P1\begin{array}{l} f(A) \\ \\\\ \\\\ \\\\ \end{array}\begin{array}{l} = c_0E + c_1A + c_2A^2 + \cdots \\\\ = c_0\underline{PEP^{-1}} + c_1\underline{PJP^{-1}} + c_2\underline{PJ^2P^{-1}} + \cdots \\\\ = P({ c_0E + c_1J + c_2J^2 + \cdots })P^{-1} \\\\ = Pf(J)P^{-1} \end{array}

 

f(A)=Pf(J)P1f(A) = Pf(J)P^{-1}

f(A)f(A)f(J)f(J)相似,该定义方法适合解决那些与f(A)f(A)相似的问题,规避掉求PP的计算量。

f(J)=[f(J1)f(J2)f(Js)]f(J) = \left[\begin{array}{c} f(J_1) \\ & f(J_2) \\ && \ddots \\ &&& f(J_s) \end{array}\right]

例1

A=[4210437317]A = \left[\begin{array}{c} -4 & 2 & 10 \\ -4 & 3 & 7 \\ -3 & 1 & 7 \end{array}\right]的Jordan矩阵J=[210021002]J= \left[\begin{array}{c} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{array}\right]P1AP=JP^{-1}AP=J,求cosA\cos A

Jordan标准型仅由一个Jordan块组成

cosJ=cosJ1=[f(λi)f(λi)f(λi)2!0f(λi)f(λi)00f(λi)]=[cos2sin2cos220cos2sin200cos2]\cos J = \cos J_1 = \left[\begin{array}{c} f(λ_i) & f'(λ_i) & \dfrac{f''(λ_i)}{2!} \\ 0 & f(λ_i) & f'(λ_i) \\ 0 & 0 & f(λ_i) \end{array}\right] = \left[\begin{array}{c} \cos 2 & -\sin 2 & -\dfrac{\cos 2}{2} \\ 0 & \cos 2 & -\sin 2 \\ 0 & 0 & \cos 2 \end{array}\right]

cosA=PcosJP1\cos A = P \cos J P^{-1}

例2

A=[311202113]A = \left[\begin{array}{c} 3 & 1 & -1 \\ -2 & 0 & 2 \\ -1 & -1 & 3 \end{array}\right],分别求sin(π4A)\sin(\dfrac{π}{4}A)eAe^A的Jordan标准型

f(A)f(A)的Jordan标准型,即求f(JA)f(J_A)的Jordan标准型。

AA的Jordan标准型为(计算略)

J=[200021002]=[[2][2102]]=[J1J2]J = \left[\begin{array}{c} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{array}\right] = \left[\begin{array}{c} \left[\begin{array}{c} 2 \end{array}\right] \\ & \left[\begin{array}{c} 2 & 1 \\ 0 & 2 \end{array}\right] \end{array}\right] = \left[\begin{array}{c} J_1 \\& J_2 \end{array}\right]

sin(π4J)=[sin(π4J1)sin(π4J2)]=[sin(π2)[sin(π2)π2cos(π2)sin(π2)]]=[1101]\sin(\dfrac{π}{4}J) = \left[\begin{array}{c} \sin(\frac{π}{4}J_1) \\& \sin(\frac{π}{4}J_2) \end{array}\right] = \left[\begin{array}{c} \sin(\frac{π}{2}) \\& \left[\begin{array}{c} \sin(\frac{π}{2}) & \frac{π}{2}\cos(\frac{π}{2}) \\ & \sin(\frac{π}{2}) \end{array}\right] \end{array}\right] = \left[\begin{array}{c} 1 & \\ & 1 & 0 \\ & & 1 \end{array}\right]

sin(π4J)\sin(\dfrac{π}{4}J)本身就是对角阵,所以就是sin(π4A)\sin(\dfrac{π}{4}A)的Jordan标准型就是[111]\left[\begin{array}{c} 1 & \\ & 1 \\ & & 1 \end{array}\right]

eJ=[eJ1eJ2]=[e2[e2e2e2]]=[e2e2e2e2]e^J = \left[\begin{array}{c} e^{J_1} \\& e^{J_2} \end{array}\right] = \left[\begin{array}{c} e^2 \\& \left[\begin{array}{c} e^2 & e^2 \\ & e^2 \end{array}\right] \end{array}\right] = \left[\begin{array}{c} e^2 & \\ & e^2 & e^2 \\ & & e^2 \end{array}\right]

接下来求eJe^J的Jordan标准型。

λEeJ=(λe2)3|λE - e^J| = (λ-e^2)^3

则存在以下三个情形。

Stuation Smith Jordan: JeJJ_{e^J}
[11(λe2)3]\left[\begin{array}{c} 1 & \\& 1 \\&& (λ-e^2)^3 \end{array}\right] [e21e21e2]\left[\begin{array}{c} e^2 & 1 & \\& e^2 & 1 \\&& e^2 \end{array}\right]
[1λe2(λe2)2]\left[\begin{array}{c} 1 & \\& λ-e^2 \\&& (λ-e^2)^2 \end{array}\right] [e2e21e2]\left[\begin{array}{c} e^2 & \\& e^2 & 1 \\&& e^2 \end{array}\right]
[λe2λe2λe2]\left[\begin{array}{c} λ-e^2 & \\& λ-e^2 \\&& λ-e^2 \end{array}\right] [e2e2e2]\left[\begin{array}{c} e^2 & \\& e^2 \\&& e^2 \end{array}\right]

λ=e2,e2λ=e^2,-e^2得到满足r(λEeJ)=r(λEJeJ)r(λE-e^J) = r(λE-J_{e^J})的情况,计算得正确情况为②。

eJe^J的Jordan标准型为[e2e21e2]\left[\begin{array}{c} e^2 & \\& e^2 & 1 \\&& e^2 \end{array}\right]

待定多项式法

最小多项式:能使φ(A)=0\varphi(A)=0的多项式中,次数最低,首项系数为11的多项式,记作m(λ)m(λ)

AA的最小多项式

m(λ)=(λλ1)m1(λλ2)m2(λλs)msm(λ) = (λ-λ_1)^{m_1} (λ-λ_2)^{m_2} \cdots (λ-λ_s)^{m_s}

称为σA={(λ1,m1),(λ2,m2),,(λs,ms)}σ_A = \{ (λ_1,m_1), (λ_2,m_2), \cdots, (λ_s,m_s)\}AA

称集合

{f(ki)(λi)  ki=0,1,2,,mi1   i=1,2,,s}\{ f^{(k_i)}(λ_i) \bold{\ |\ } k_i = 0,1,2,\dots,m_i-1 \ \ \ i=1,2,\dots,s\}

为函数f(x)f(x)AA上的谱值,记为f(σA)f(σ_A)

若函数f(x)f(x)AA上的谱值f(σA)f(σ_A)存在,有复系数待定多项式g(x)g(x)使得

g(σA)=f(σA)g(σ_A) = f(σ_A)

则定义f(A)=g(A)f(A) = g(A)实际上g(x)g(x)就是比最小多项式的次数低11次的多项式(证明略)

例1

m(λ)=(λ3)2(λ5)3m(λ) = (λ-3)^2(λ-5)^3

例2

A=[4210437417]A= \left[\begin{array}{c} -4 & 2 & 10 \\ -4 & 3 & 7 \\ -4 & 1 & 7 \end{array}\right],求cosA\cos A

f(λ)=λEA=(λ2)3f(λ) = |λE-A| = (λ-2)^3

特征多项式一定是零化多项式,最小多项式一定是零化多项式的因子。

AA的最小多项式可能是以下三种情形

AA带入上式,仅有(A2E)3=0(A-2E)^3 = 0,故AA的最小多项式为

m(λ)=(λ2)3m(λ) = (λ-2)^3

则待定多项式g(x)g(x)应该是一个22次多项式记为

g(x)=a0+a1x+a2x2g(x) = a_0 + a_1x + a_2x^2

{g(2)=a0+2a1+4a2=cos2g(2)=a1+4a2=sin2g(2)=2a2=cos2\begin{cases} g(2) = a_0 + 2a_1 + 4a_2 = \cos2 \\ g'(2) = a_1 + 4a_2 = -\sin2 \\ g''(2) = 2a_2 = -\cos2 \end{cases},解得 {a0=cos2+2sin2a1=sin2+2cos2a2=12cos2\begin{cases} a_0 = -\cos2 + 2\sin2 \\ a_1 = -\sin2 + 2\cos2 \\ a_2 = \frac{1}{2}\cos2 \end{cases}

cosA=a0E+a1A+a2A2\cos A = a_0E + a_1A + a_2A^2(带入a0,a1,a2a_0,a_1,a_2即得最终结果)