二次型

二次型的定义

若含有nn个变量x1,x2,,xnx_1,x_2,\cdots,x_n的二次齐次函数

f(x1,x2,,xn)=a11x12+a22x22++annxn2+2a12x1x2+2a13x1x3++2a1nx1xn+2a23x2x3++2a2nx2xn++2an1,nxn1xnf(x_1,x_2,\cdots,x_n) = \begin{array}{l} \\ a_{11}x_1^2 + a_{22}x_2^2 + \cdots + a_{nn}x_n^2 + \\ 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + \cdots + 2a_{1n}x_1x_n + \\ 2a_{23}x_2x_3 + \cdots + 2a_{2n}x_2x_n + \\ \cdots + 2a_{n-1,n}x_{n-1}x_n \end{array}

可写成

f(x1,x2,,xn)=[x1x2xn][a11a122a1n2a122a22a2n2a1n2a2n2ann][x1x2xn]=xTAxf(x_1,x_2,\cdots,x_n) = \left[\begin{array}{c} x_1 & x_2 & \cdots & x_n \end{array}\right] \left[\begin{array}{c} a_{11} & \frac{a_{12}}{2} & \cdots & \frac{a_{1n}}{2} \\ \frac{a_{12}}{2} & a_{22} & \cdots & \frac{a_{2n}}{2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{a_{1n}}{2} & \frac{a_{2n}}{2} & \cdots & a_{nn} \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array}\right] = x^TAx

其中AT=AA^T = A,称AA二次型矩阵。若xTAx>0x^TAx>0,则称xTAxx^TAx正定二次型AA正定矩阵

标准形

若所有aij,ij=0a_{ij,i≠j}=0,即只含有变量的平方顶,则称该二次型为标准形

其中正的aiia_{ii}的个数称为正惯性指数,负的aiia_{ii}的个数称为负惯性指数

规范形

在标准形的基础上,若所有aii=1,1,0a_{ii} = 1,-1,0,则称该二次型为规范形