矩阵(Matrix)

矩阵计算

乘法

矩阵与向量乘法

[a11a12a1na21a22a2nam1am2amn]m×n[b1b2bn]n×1=[a11b1+a12b2++a1nbna21b1+a22b2++a2nbnam1b1+am2b2++amnbn]m×n\left[\begin{array}{c} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array}\right]_{m×n} \cdot \left[\begin{array}{c} b_1 \\ b_2 \\ \vdots \\ b_n \end{array}\right]_{n×1} = \left[\begin{array}{c} a_{11}b_1 + a_{12}b_2 + \cdots + a_{1n}b_n \\ a_{21}b_1 + a_{22}b_2 + \cdots + a_{2n}b_n \\ \vdots \\ a_{m1}b_1 + a_{m2}b_2 + \cdots + a_{mn}b_n \end{array}\right]_{m×n}

矩阵与矩阵乘法

线性代数的本质:矩阵乘法

Am×n×Bn×sA_{m×n}×B_{n×s}:左阵定行,右阵定列;内等外定。

[a11a12a1na21a22a2nam1am2amn]m×n[b11b12b1mb21b22b2mbn1bn2bnm]n×s=[a11b11+a12b21++a1nbn1a11b12+a12b22++a1nbn2a11b1m+a12b2m++a1nbnma21b11+a22b21++a2nbn1a21b12+a22b22++a2nbn2a21b1m+a22b2m++a2nbnmam1b11+am2b22++amnbn1am1b12+am2b22++amnbn2am1b1m+am2b2m++amnbnm]m×s\left[\begin{array}{c} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array}\right]_{m×n} \cdot \left[\begin{array}{c} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nm} \end{array}\right]_{n×s} = \left[\begin{array}{c} a_{11}b_{11} + a_{12}b_{21} + \cdots + a_{1n}b_{n1} & a_{11}b_{12} + a_{12}b_{22} + \cdots + a_{1n}b_{n2} & \dots & a_{11}b_{1m} + a_{12}b_{2m} + \cdots + a_{1n}b_{nm} \\ a_{21}b_{11} + a_{22}b_{21} + \cdots + a_{2n}b_{n1} & a_{21}b_{12} + a_{22}b_{22} + \cdots + a_{2n}b_{n2} & \dots & a_{21}b_{1m} + a_{22}b_{2m} + \cdots + a_{2n}b_{nm} \\ \vdots & \vdots & \ddots \\ a_{m1}b_{11} + a_{m2}b_{22} + \cdots + a_{mn}b_{n1} & a_{m1}b_{12} + a_{m2}b_{22} + \cdots + a_{mn}b_{n2} & \dots & a_{m1}b_{1m} + a_{m2}b_{2m} + \cdots + a_{mn}b_{nm} \end{array}\right]_{m×s}

性质

行列式

A=det(A)=a11a1nan1annn×n=j=1narjArj=i=1naicAic|A|=\det(A)= \left|\begin{array}{c} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{array}\right|_{n×n} = \sum\limits_{j=1}^{n} a_{rj}A_{rj} = \sum\limits_{i=1}^{n} a_{ic}A_{ic}

特别的:

计算性质

拉普拉斯展开

AOBn×n=ABAOBn×n=ABABOn×n=(1)mnABOABn×n=(1)mnAB\left|\begin{array}{c} A & * \\ O & B \end{array}\right|_{n×n} =|A|⋅|B| \newline\,\newline \left|\begin{array}{c} A & O \\ * & B \end{array}\right|_{n×n} =|A|⋅|B| \newline\,\newline \left|\begin{array}{c} * & A \\ B & O \end{array}\right|_{n×n} =(-1)^{mn}|A|⋅|B| \newline\,\newline \left|\begin{array}{c} O & A \\ B & * \end{array}\right|_{n×n} =(-1)^{mn}|A|⋅|B|

转置

[a11a12a1na21a22a2nam1am2amn]m×nT=[a11a21am1a12a22am2a1na2namn]n×m\left[\begin{array}{c} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{array}\right]_{m×n}^T = \left[\begin{array}{c} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{array}\right]_{n×m}

计算性质

共轭

实部不变,虚部取负。记作A\overline{A}

共轭转置

AH=(A)T=ATA^H = (\overline{A})^T = \overline{A^T}

方法一

A1=AAA^{-1} = \dfrac{A^*}{|A|}

方法二

(AE)初等行变换(EA1)(A | E) \xrightarrow{初等行变换} (E | A^{-1})

计算性质

性质

特殊矩阵

零矩阵

所有元素均为0的矩阵。

0=[0000000000000000]m×n0= \left[\begin{array}{c} 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \end{array}\right]_{m×n}

单位矩阵

主对角线均为1,其余均为0的矩阵。

E=[100010001]n×nE= \left[\begin{array}{c} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array}\right]_{n×n}

初等矩阵

由单位矩阵经过一次初等变换得到的矩阵。

左行右列规则

三角矩阵

主对角

主对角矩阵的行列式满足:A=a11a22ann|A| = a_{11}a_{22}\cdots a_{nn}

三角矩阵

A=[a11000a22000ann]n×nA= \left[\begin{array}{c} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{array}\right]_{n×n}

上三角矩阵

A=[a11a12a1n0a22a2n00ann]n×nA= \left[\begin{array}{c} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{array}\right]_{n×n}

下三角矩阵

A=[a1100a21a220an1an2ann]n×nA= \left[\begin{array}{c} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}\right]_{n×n}

单位上三角矩阵

A=[1a12a1n01a2n001]n×nA= \left[\begin{array}{c} 1 & a_{12} & \cdots & a_{1n} \\ 0 & 1 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array}\right]_{n×n}

单位下三角矩阵

A=[100a2110an1an21]n×nA= \left[\begin{array}{c} 1 & 0 & \cdots & 0 \\ a_{21} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & 1 \end{array}\right]_{n×n}

副对角

副对角矩阵的行列式满足:A=(1)n(n1)2a1na2,n1an1|A| = (-1)^{\frac{n(n-1)}{2}} a_{1n}a_{2,n-1}\cdots a_{n1}

三角矩阵

A=[a1na2,n1an1]n×nA= \left[\begin{array}{c} & & & a_{1n} \\ & & a_{2,n-1} & \\ & & & \\ a_{n1} & & & \end{array}\right]_{n×n}

希尔伯特(Hilbert )矩阵

A=[112131n1213141n+11314151n+21n1n+11n+212n1]n×nA= \left[\begin{array}{c} 1 & \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n} \\\\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots & \frac{1}{n+1} \\\\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \cdots & \frac{1}{n+2} \\\\ \vdots & \vdots & \vdots & \ddots & \vdots \\\\ \frac{1}{n} & \frac{1}{n+1} & \frac{1}{n+2} & \cdots & \frac{1}{2n-1} \end{array}\right]_{n×n}

行阶梯矩阵

eg:[a11a12a13a14a150a22a23a24a25000a34a350000a45]eg: \left[\begin{array}{c} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ 0 & a_{22} & a_{23} & a_{24} & a_{25} \\ 0 & 0 & 0 & a_{34} & a_{35} \\ 0 & 0 & 0 & 0 & a_{45} \end{array}\right]

对系数矩阵做初等行变换不影响方程组结果。

性质

伴随矩阵

A=[A11A21An1A12A22An2A1nA2nAnn]n×nA^*= \left[\begin{array}{c} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{array}\right]_{n×n}

注意AA^*是矩阵AA每个元素替换为其代数余子式再转置得到的。

计算性质

r(A)={n,if   r(A)=n1,if   r(A)=n10,if   r(A)<n1r(A^*)= \begin{cases} n, & if \ \ \ r(A)=n \\ 1, & if \ \ \ r(A)=n-1 \\ 0, & if \ \ \ r(A)<n-1 \end{cases}

范德蒙矩阵

A=[111x1x2xnx12x22xn2x1n1x2n1xnn1]n×nA= \left[\begin{array}{c} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & & x_n^{n-1} \end{array}\right]_{n×n}

其行列式(范德蒙行列式)为1j<in(xixj)\prod\limits_{1≤j<i≤n} (x_i-x_j)

对称矩阵

满足AT=AA^T=A的矩阵。

正交

正交向量

a\vec{a}b\vec{b}正交,则ab=0\vec{a} ⋅ \vec{b} = 0

正交矩阵

nn阶方阵AA满足AAT=ATA=EAA^T=A^TA=E,则称AA正交矩阵,简称正交阵

充要条件

A=[a1a2an]A = \left[\begin{matrix} a_1 & a_2 & \cdots & a_n \end{matrix}\right]

ATA=[a1Ta2TanT][a1a2an]=[a1Ta1a1Ta2a1Tana2Ta1a2Ta2a2TananTa1anTa2anTan]=EA^TA = \left[\begin{matrix} {a_1}^T \\ {a_2}^T \\ \vdots \\ {a_n}^T \end{matrix}\right] \left[\begin{matrix} a_1 & a_2 & \cdots & a_n \end{matrix}\right] = \left[\begin{matrix} {a_1}^T a_1 & {a_1}^T a_2 & \cdots & {a_1}^T a_n \\ {a_2}^T a_1 & {a_2}^T a_2 & \cdots & {a_2}^T a_n \\ \vdots & \vdots & \ddots & \vdots \\ {a_n}^T a_1 & {a_n}^T a_2 & \cdots & {a_n}^T a_n \end{matrix}\right] = E

{aiTaj=1i=jaiTaj=0ij\begin{cases} {a_i}^T {a_j} = 1 & i=j \\ {a_i}^T {a_j} = 0 & i≠j \end{cases}

AA是正交阵的充要条件是AA的列(行)向量都是单位向量,且两两正交。

正交变换

AA为正交阵,xx为向量,AxAx称为正交变换。
正交变换不改变向量的长度。

性质