线性空间:线性变换

定义

对于任意α,βVα,β∈VkPk∈P,映射TT满足

则称TT是线性空间VV的线性变换。

几个线性变换

值域与核

线性空间VV的线性变换TT的值域与核都是VV的线性子空间。

值域

R(T)={T(α)  αV}R(T) = \{ T(α) \bold{\ |\ } α∈V \}

称值域的维数(有结构的)为TT,记为rank(T)rank(T)

ααVV的一组基,则R(T)=Span{T(α1),T(α2),,T(αn)}R(T) = Span\{ T(α_1), T(α_2), \dots, T(α_n) \}

N(T)={α  T(α)=0,αV}N(T) = \{ α \bold{\ |\ } T(α)=0,α∈V \}

记作Ker(T)Ker(T)N(T)N(T)T1(T)T^{-1}(T),称为零空间核子空间

称核子空间的维数dim(N(T))dim(N(T))没有结构的)为TT亏度(或零度)。

xVx∈V,则T(x)=0T(x) = 0,解得表达式,再将自由变量带回xx,即得N(T)N(T)的基。

例1

TTP4(x)P_4(x)中的如下线性变换

T(f(x))=f(x)+f(1)T\big(f(x)\big) = f''(x) + f(1)

(1)求TT的值域R(T)R(T)的基与维数;
(2)求TT的核空间N(T)N(T)的基与维数。

(1)

P4(x)P_4(x)的一组基1,x,x2,x3,x41,x,x^2,x^3,x^4

R(T)=Span{T(1),T(x),T(x2),T(x3),T(x4)}=Span{0+1,0+1,2+1,6x+1,12x2+1}=Span{1,6x+1,12x2+1}=Span{1,x,x2}\begin{array}{l} R(T) \\ \\\\ \\\\ \\\\ \end{array} \begin{array}{l} = Span \{ T(1),T(x),T(x^2),T(x^3),T(x^4) \} \\\\ = Span \{ 0+1, 0+1, 2+1, 6x+1, 12x^2+1 \} \\\\ = Span \{ 1, 6x+1, 12x^2+1 \} \\\\ = Span \{ 1, x, x^2 \} \end{array}

1,x,x21, x, x^2R(T)R(T)的一组基,dim(R(T))=3dim(R(T)) = 3

(2)

α=a0+a1x+a2x2+a3x3+a4x4α = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4

T(α)=(2a2+6a3x+12a4x2)+(a0+a1+a2+a3+a4)T(α) = (2a_2 + 6a_3x + 12a_4x^2) + (a_0+a_1+a_2+a_3+a_4)

αN(T)α∈N(T)T(α)=(2a2+6a3x+12a4x2)+(a0+a1+a2+a3+a4)=0T(α) = (2a_2 + 6a_3x + 12a_4x^2) + (a_0+a_1+a_2+a_3+a_4) = 0

{a0+a1+3a2+a3+a4=06a3=012a4=0\begin{cases} a_0+a_1+3a_2+a_3+a_4 = 0 \\ 6a_3 = 0 \\ 12a_4 = 0 \end{cases} 解得 {a0=a13a2a1=a1a2=a2a3=0a4=0\begin{cases} a_0 = -a_1- 3a_2 \\ a_1 = a_1 \\ a_2 = a_2 \\ a_3 = 0 \\ a_4 = 0 \end{cases}(取a1,a2a_1,a_2为自由变量)

α=a1(x11)+a2(x23)α = a_1(x_1-1) + a_2(x^2-3)

[x11x23]\left[\begin{array}{c} x_1-1 & x^2-3 \end{array}\right]即为N(T)N(T)的基,dim(N(T))=2dim(N(T))=2

例2

已知R2×2R^{2×2}的线性变换T(X)=MXXMT(X) = MX - XM,其中XR2×2,M=[1203]X∈R^{2×2}, M=\left[\begin{array}{c} 1 & 2 \\ 0 & 3 \end{array}\right],求R[T]R[T]N[T]N[T]的基与维数。

R2×2R^{2×2}的一组基

[E11E12E21E22]=[[1000][0100][0010][0001]]\left[\begin{array}{c} E_{11} & E_{12} & E_{21} & E_{22} \end{array}\right] = \left[\begin{array}{c} \left[\begin{array}{c} 1 & 0 \\ 0 & 0 \end{array}\right] & \left[\begin{array}{c} 0 & 1 \\ 0 & 0 \end{array}\right] & \left[\begin{array}{c} 0 & 0 \\ 1 & 0 \end{array}\right] & \left[\begin{array}{c} 0 & 0 \\ 0 & 1 \end{array}\right] \end{array}\right]

R[T]=Span[T(E11)T(E12)T(E21)T(E22)]=R[T] = Span\left[\begin{array}{c} T(E_{11}) & T(E_{12}) & T(E_{21}) & T(E_{22}) \end{array}\right] =

Span([0200][0200][2022][0200])Span\left(\begin{array}{c} \left[\begin{array}{c} 0 & -2 \\ 0 & 0 \end{array}\right] & \left[\begin{array}{c} 0 & -2 \\ 0 & 0 \end{array}\right] & \left[\begin{array}{c} 2 & 0 \\ 2 & -2 \end{array}\right] & \left[\begin{array}{c} 0 & 2 \\ 0 & 0 \end{array}\right] \end{array}\right)

[[0200][0200][2022][0200]]=[E11E12E21E22][0020220200200020]初等行变换[1101001000000000]\left[\begin{array}{c} \left[\begin{array}{c} 0 & -2 \\ 0 & 0 \end{array}\right] & \left[\begin{array}{c} 0 & -2 \\ 0 & 0 \end{array}\right] & \left[\begin{array}{c} 2 & 0 \\ 2 & -2 \end{array}\right] & \left[\begin{array}{c} 0 & 2 \\ 0 & 0 \end{array}\right] \end{array}\right] = \left[\begin{array}{c} E_{11} & E_{12} & E_{21} & E_{22} \end{array}\right] \left[\begin{array}{c} 0 & 0 & 2 & 0 \\ -2 & -2 & 0 & 2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & -2 & 0 \end{array}\right] \xrightarrow[]{初等行变换} \left[\begin{array}{c} 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]

观察可知dim(R[T])=2dim(R[T])=2,即R[T]=Span[[2022][0200]]R[T]=Span\left[\begin{array}{c} \left[\begin{array}{c} 2 & 0 \\ 2 & -2 \end{array}\right] & \left[\begin{array}{c} 0 & 2 \\ 0 & 0 \end{array}\right] \end{array}\right]

X=[x1x2x3x4]X = \left[\begin{array}{c} x_1 & x_2 \\ x_3 & x_4 \end{array}\right]

T(X)=[2x32x42x22x12x32x3]=[0000]T(X) = \left[\begin{array}{c} 2x_3 & 2x_4 - 2x_2 - 2x_1 \\ 2x_3 & -2x_3 \end{array}\right] = \left[\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array}\right]

解得{x1=x1x2=x2x3=0x4=x2+x1\begin{cases} x_1 = x_1 \\ x_2 = x_2 \\ x_3 = 0 \\ x_4 = x_2 + x_1 \end{cases}X=[x1x20x1+x2]=x1[1001]+x2[0101]X = \left[\begin{array}{c} x_1 & x_2 \\ 0 & x_1 + x_2 \end{array}\right] = x_1 \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array}\right] + x_2 \left[\begin{array}{c} 0 & 1 \\ 0 & 1 \end{array}\right]

dim(N[T])=2dim(N[T])=2[1001],[0101]\left[\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array}\right], \left[\begin{array}{c} 0 & 1 \\ 0 & 1 \end{array}\right]N[T]N[T]的基。

表示矩阵

定义

α=(α1,α2,,αn)α = (α_1,α_2,\dots,α_n)VV的一组基,有

[T(α1)T(αn)]=T(α1,,αn)=[α1αn][a11a1nan1ann]=αA\left[\begin{array}{c} T(α_1) & \cdots & T(α_n) \end{array}\right] = T(α_1, \dots, α_n) = \left[\begin{array}{c} α_1 & \cdots & α_n \end{array}\right] \left[\begin{array}{c} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{array}\right] =αA

T(α)=αAT(α) = αA

则称AATT在基αα下的表示矩阵也可看做T(α)T(α)在基αα下的坐标)。

线性空间P3×3P^{3×3}的线性变换σσ

σ([x1x2x3])=[x1x2x1+x2]σ \left( \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right] \right) = \left[\begin{array}{c} x_1 \\ x_2 \\ x_1 + x_2 \end{array}\right]

σσ在标准基(ε1,ε2,ε3)=[100],[010],[001](ε_1, ε_2, ε_3) = \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right], \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right], \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right]下的表示矩阵。

σ([x1x2x3])=[100010110][x1x2x3]σ \left( \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right] \right) = \left[\begin{array}{c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right]

即求σ(ε1,ε2,ε3)=(ε1,ε2,ε3)Aσ(ε_1, ε_2, ε_3) = (ε_1, ε_2, ε_3)A的矩阵AA

σ(ε1,ε2,ε3)=[100010110][ε1ε2ε3]=[100010110][100010001]=[100010110]=[ε1ε2ε3][100010110]\begin{array}{l} σ(ε_1, ε_2, ε_3) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{l} = \left[\begin{array}{c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right] \left[\begin{array}{c} ε_1 & ε_2 & ε_3 \end{array}\right] \\\\= \left[\begin{array}{c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right] \left[\begin{array}{c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \\\\ = \left[\begin{array}{c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right] \\\\ = \left[\begin{array}{c} ε_1 & ε_2 & ε_3 \end{array}\right] \left[\begin{array}{c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right] \end{array}

综上可得A=[100010110]A = \left[\begin{array}{c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right]

抽象组合

TT作用到抽象向量组的组合上,形式上组合系数直接提到外面

T([α1αn][x1xn])=T(x1α1++xnαn)=x1T(α1)++xnT(αn)=[T(α1)T(αn)][x1xn]=T(α1,,αn)[x1xn]\begin{array}{l} T\left( \left[\begin{array}{c} α_1 & \cdots & α_n \end{array}\right] \left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right] \right) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{l} \\ = T(x_1α_1 + \cdots + x_nα_n) \\ \\ = x_1T(α_1) + \cdots + x_nT(α_n) \\ \\ = \left[\begin{array}{c} T(α_1) & \cdots & T(α_n) \end{array}\right] \left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right] \\ = T(α_1,\dots,α_n) \left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right] \end{array}

上式,当[x1xn]\left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right]替换为矩阵XX时同样适用,即

T(αX)=T(α)X=αAXT(αX) = T(α)X = αAX

坐标关系

α,T(α)α,T(α)在基αα下的坐标分别是x,yx,y

{T(α)=T(αx)=αAxT(α)=αy      αAx=αy      y=Ax\begin{cases} T(α) = T(αx) = αAx \\ T(α) = αy \end{cases} { \ \ \ ⇒ \ \ \ } αAx = αy { \ \ \ ⇒ \ \ \ } y = Ax

AA可逆时

线性变换复合

若在基αα下,T1(α)=αAT_1(α) = αAT2(α)=αBT_2(α) = αB,则

R2×2R^{2×2}上的变换T(X)=X[1111]T(X)= X \left[\begin{array}{c} 1 & 1 \\ 1 & -1 \end{array}\right]S(X)=X[1020]S(X)= X \left[\begin{array}{c} 1 & 0 \\ -2 & 0 \end{array}\right]

(1)T+ST+STSTS在基e=[[1000][0100][0010][0001]]e = \left[\begin{array}{c} \left[\begin{array}{c} 1 & 0 \\ 0 & 0 \end{array}\right] & \left[\begin{array}{c} 0 & 1 \\ 0 & 0 \end{array}\right] & \left[\begin{array}{c} 0 & 0 \\ 1 & 0 \end{array}\right] & \left[\begin{array}{c} 0 & 0 \\ 0 & 1 \end{array}\right] \end{array}\right]下的矩阵;
(2)T,ST,S是否可逆,若可逆,求其其逆变换。

(1)

T(e)=e[1111]=[[1100][1100][0011][0011]]T(e) = e \left[\begin{array}{c} 1 & 1 \\ 1 & -1 \end{array}\right] = \left[\begin{array}{c} \left[\begin{array}{c} 1 & 1 \\ 0 & 0 \end{array}\right] & \left[\begin{array}{c} 1 & -1 \\ 0 & 0 \end{array}\right] & \left[\begin{array}{c} 0 & 0 \\ 1 & 1 \end{array}\right] & \left[\begin{array}{c} 0 & 0 \\ 1 & -1 \end{array}\right] \end{array}\right]

T(e)=e[1100110000110011]记为eAT(e) = e \left[\begin{array}{c} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right] \xrightarrow[]{记为} eA

S(e)=e[1020]=[[1000][2000][0010][0020]]S(e) = e \left[\begin{array}{c} 1 & 0 \\ -2 & 0 \end{array}\right] = \left[\begin{array}{c} \left[\begin{array}{c} 1 & 0 \\ 0 & 0 \end{array}\right] & \left[\begin{array}{c} -2 & 0 \\ 0 & 0 \end{array}\right] & \left[\begin{array}{c} 0 & 0 \\ 1 & 0 \end{array}\right] & \left[\begin{array}{c} 0 & 0 \\ -2 & 0 \end{array}\right] \end{array}\right]

S(e)=e[1200000000120000]记为eBS(e) = e \left[\begin{array}{c} 1 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{array}\right] \xrightarrow[]{记为} eB

T+ST+S的表示矩阵为A+BA+BTSTS的表示矩阵为ABAB(计算略)。

(2)明显r(B)4r(B)≠4SS不可逆;计算得r(A)=4r(A)=4,接下来求T1T^{-1}T1T^{-1}也是一个线性变换)

X=T1(T(X))=T1(X[1111])=T1(X)[1111]X = T^{-1}\big(T(X)\big) = T^{-1} \left( X \left[\begin{array}{c} 1 & 1 \\ 1 & -1 \end{array}\right] \right) = T^{-1}(X) \left[\begin{array}{c} 1 & 1 \\ 1 & -1 \end{array}\right]

综上

T1(X)=X[1111]1T^{-1}(X) = X \left[\begin{array}{c} 1 & 1 \\ 1 & -1 \end{array}\right]^{-1}

基过度

TT在基α,βα,β下的表示矩阵为A,BA,B,且β=αPβ=αP

{T(α)=αAT(β)=βB=αPBT(β)=T(αP)=T(α)P=αAP      αPB=αAP      \begin{cases} T(α) = αA \\ T(β) = \underline{β}B = αPB \\ T(β) = T(αP) = \underline{T(α)}P = αAP \end{cases} { \ \ \ ⇒ \ \ \ } αPB = αAP { \ \ \ ⇒ \ \ \ }

B=P1APB = P^{-1}AP

不变子空间

WWVV的子空间,若对于任意向量αWα∈W,有T(α)WT(α)∈W,则称WW是线性变换TT不变子空间,简称T子空间

显然零空间是任何线性变换的不变子空间,称为平凡不变子空间

线性变换的特征值与特征向量

TT是数域PPnn维线性空间VV的线性变换。如果对于数域PP中的某一个数λλ,存在非零向量αVα∈V,使得

T(α)=λαT(α)=λα

成立,则称λλ为线性变换TT的特征值,αα为线性变换TT的属于特征值λλ的特征向量。

求线性变换的特征值与特征向量

取基为αα