线性空间:线性子空间

定义

VV是数域PP上的一个线性空间,SSVV中的一个非空子集。若SS对于VV中定义的加法与数乘构成一个线性空间,则SS称为VV线性子空间充要条件SS对于VV中的线性运算封闭(α+βS,kαSα+β∈S,kα∈S)。

单独一个零向量构成的子集{0}\{0\}VV都是VV的线性子空间,称它们为线性空间VV平凡子空间

子空间的一组基可以扩成大空间的一组基。

生成子空间

如果VV是数域PP上的一个线性空间,α1,α2,,αmα_1, α_2, \dots,α_m是给定的mm个向量,定义一个集合

S={λ1α1++λmαm  λ1,,λmP}S = \{ λ_1α_1 + \cdots + λ_mα_m \bold{\ |\ } λ_1,\dots,λ_m ∈ P\}

显然集合SS非空,且SS对于VV中的线性运算封闭,因此SSVV的子空间,记作Span(α1,α2,,αm)Span(α_1, α_2, \dots,α_m),称为生成子空间α1,α2,,αmα_1, α_2, \dots,α_m称为生成元。其生成元的极大线性无关组就是生成子空间的一组基。

{f1(t)=1+4t2t2+t3f2(t)=1+9t3t2+2t3f3(t)=5+6t+t3f4(t)=5+7t5t2+2t3\begin{cases} f_1(t) = 1 + 4t - 2t^2 + t^3 \\ f_2(t) = -1 + 9t - 3t^2 + 2t^3 \\ f_3(t) = -5 + 6t + t^3 \\ f_4(t) = 5 + 7t - 5t^2 + 2t^3 \end{cases}

(1) 求Span{f1(t),f2(t),f3(t),f4(t)}Span\{f_1(t), f_2(t), f_3(t), f_4(t) \}的基与维数。
(2) 将Span{f1(t),f2(t),f3(t),f4(t)}Span\{f_1(t), f_2(t), f_3(t), f_4(t) \}的基扩充成P3(t)P_3(t)的基。

[f1(t)f2(t)f3(t)f4(t)]=[1tt2t3]A\left[\begin{array}{c} f_1(t) & f_2(t) & f_3(t) & f_4(t) \end{array}\right] = \left[\begin{array}{c} 1 & t & t^2 & t^3 \end{array}\right] A

A=[1155496723051212]初等行变换[1155012100000000]A = \left[\begin{array}{c} 1 & -1 & -5 & 5 \\ 4 & 9 & 6 & 7 \\ -2 & -3 & 0 & -5 \\ 1 & 2 & 1 & 2 \end{array}\right] \xrightarrow[]{初等行变换} \left[\begin{array}{c} 1 & -1 & -5 & 5 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]

取生成子空间的基(f1,f2)(f_1, f_2)

[f1f2??]=[1tt2t3][11??49??23??12??]\left[\begin{array}{c} f_1 & f_2 & ? & ? \end{array}\right] = \left[\begin{array}{c} 1 & t & t^2 & t^3 \end{array}\right] \left[\begin{array}{c} 1 & -1 & ? & ? \\ 4 & 9 & ? & ? \\ -2 & -3 & ? & ? \\ 1 & 2 & ? & ? \end{array}\right]

仅需在右侧矩阵添加两列(原则上任意,但简单方便计算)并使其可逆,添加[00001001]\left[\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}\right]后得

[f1f2t2t3]=[1tt2t3][1100490023101201]\left[\begin{array}{c} f_1 & f_2 & t^2 & t^3 \end{array}\right] = \left[\begin{array}{c} 1 & t & t^2 & t^3 \end{array}\right] \left[\begin{array}{c} 1 & -1 & 0 & 0 \\ 4 & 9 & 0 & 0 \\ -2 & -3 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{array}\right]

得到P3(t)P_3(t)的一组基(f1,f2,t2,t3)(f_1, f_2, t^2, t^3)

子空间的交并

交空间

V1V_1V2V_2是线性空间VV的子空间,V1V2V_1∩V_2V1V2V_1∩V_2没有结构)也是VV的子空间(V1V2V_1∪V_2不是子空间),称这个子空间为V1V_1V2V_2交空间

和空间

V1V_1V2V_2是线性空间VV的子空间

V1+V2={α1+α2  α1V1,α2V2}V_1 + V_2 = \{ α_1+α_2 \bold{\ |\ } α_1∈V_1, α_2∈V_2 \}

也是VV的子空间,称这个子空间为V1V_1V2V_2和空间

α1=[1210],α2=[1111],β1=[2101],β2=[1137]α_1 = \left[\begin{array}{c} 1 \\ 2 \\ 1 \\ 0 \end{array}\right], α_2 = \left[\begin{array}{c} -1 \\ 1 \\ 1 \\ 1 \end{array}\right], β_1 = \left[\begin{array}{c} 2 \\ -1 \\ 0 \\ 1 \end{array}\right], β_2 = \left[\begin{array}{c} 1 \\ -1 \\ 3 \\ 7 \end{array}\right]

V1=Span(α1,α2)V_1 = Span(α_1, α_2)
V2=Span(β1,β2)V_2 = Span(β_1, β_2)

(1)求V1+V2V_1+V_2的维数及基。
(2)求V2V2V_2∩V_2的维数及基。

V1+V2=Span(α1,α2,β1,β2)V_1+V_2 = Span(α_1, α_2, β_1, β_2)

[1121211111030117]初等行变换[11210135004120000]\left[\begin{array}{c} 1 & −1 & 2 & 1 \\ 2 & 1 & −1 & −1 \\ 1 & 1 & 0 & 3 \\ 0 & 1 & 1 & 7 \end{array}\right] \xrightarrow[]{初等行变换} \left[\begin{array}{c} 1 & −1 & 2 & 1 \\ 0 & 1 & −3 & −5 \\ 0 & 0 & 4 & 12 \\ 0 & 0 & 0 & 0 \end{array}\right]

明显r(α1,α2,β1,β2)=3r(α_1, α_2, β_1, β_2)=3,基为(α1,α2,β1)(α_1, α_2, β_1)(α1,α2,β2)(α_1, α_2, β_2)

对任意向量γγγ=a1α1+a2α2=b1β1+b2β2γ = a_1α_1 + a_2α_2 = b_1β_1 + b_2β_2

[α1α2β1β2][a1a2b1b2]=0\left[\begin{array}{c} α_1 & α_2 & -β_1 & -β_2 \end{array}\right] \left[\begin{array}{c} a_1 \\ a_2 \\ b_1 \\ b_2 \end{array}\right] = 0

解得[a1a2b1b2]=k[1431]\left[\begin{array}{c} a_1 \\ a_2 \\ b_1 \\ b_2 \end{array}\right] = k \left[\begin{array}{c} 1 \\ -4 \\ 3 \\ -1 \end{array}\right],则

γ=a1α1+a2α2=kα14kα2=b1β1+b2β2=3kβ1kβ2=k[5234]\begin{matrix} γ \\ \\ \\ \\ \\ \\ \end{matrix} \begin{matrix} = a_1α_1 + a_2α_2 & = & kα_1 - 4kα_2 \\ = b_1β_1 + b_2β_2 & = & 3kβ_1 - kβ_2 \\ = k \left[\begin{array}{c} 5 \\ -2 \\ -3 \\ -4 \end{array}\right] \end{matrix}

[5234]\left[\begin{array}{c} 5 \\ -2 \\ -3 \\ -4 \end{array}\right]V2V2V_2∩V_2得一个基且dim(V2V2)=1dim(V_2∩V_2)=1

维数定理

dim(V1+V2)=dim(V1)+dim(V2)dim(V1V2)dim(V_1 + V_2) = dim(V_1) + dim(V_2) - dim(V_1∩V_2)

V1,V2V_1,V_2是线性空间VnV^n的两个子空间,dim(V1)+dim(V2)>ndim(V_1)+dim(V_2)>n。证明必存在α0α≠0,使得αV1V2α∈V_1∩V_2

证明

明显(V1+V2)Vn(V_1 + V_2)∈V^n,有dim(V1+V2)ndim(V_1 + V_2) ≤ n

又有dim(V1)+dim(V2)=dim(V1+V2)+dim(V1V2)>ndim(V_1) + dim(V_2) = dim(V_1 + V_2) + dim(V_1∩V_2) > n

dim(V1V2)>ndim(V1+V2)0dim(V_1∩V_2) > n - dim(V_1 + V_2) ≥ 0

dim(V1V2)>0dim(V_1∩V_2) > 0,即V1V2V_1∩V_2内一定有非零元。

直和

V1+V2V_1+V_2中每个向量的分解式α=α1+α2   (α1V1,α2V2)α = α_1 + α_2 \ \ \ (α_1∈V_1, α_2∈V_2)都是唯一的,则称V1+V2V_1+V_2直和

记作

V1V2V_1⊕V_2

等价形式

直和分解

V=V1V2V=V_1⊕V_2,则称V1V_1V2V_2是互补的,两者互称为对方的补空间。称V1V2V_1⊕V_2VV直和分解

例1

V1={[x1x2x3x4]2x1+3x2x3=0,x1+2x2+x3x4=0}V_1 = \left\{ \left[\begin{array}{c} x_1 & x_2 \\ x_3 & x_4 \end{array}\right] \Big|\, 2x_1 + 3x_2 - x_3 = 0, x_1 + 2x_2 + x_3 - x_4 = 0 \right\}

V2={[21a+21],[124a+8]}V_2 = \left\{ \left[\begin{array}{c} 2 & -1 \\ a+2 & 1 \end{array}\right] , \left[\begin{array}{c} -1 & 2 \\ 4 & a+8 \end{array}\right] \right\}

(1)求V1V_1的基与维数。
(2)aa为何值时V1+V2V_1+V_2是直和;当V1+V2V_1+V_2不是直和时,求V1V2V_1∩V_2的维数。

{2x1+3x2x3=0x1+2x2+x3x4=0\begin{cases} 2x_1 + 3x_2 - x_3 = 0 \\ x_1 + 2x_2 + x_3 - x_4 = 0 \end{cases},得[x1x2x3x4]=k1[1023]+k2[0135]\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}\right] = k_1 \left[\begin{array}{c} 1 \\ 0 \\ 2 \\ 3 \end{array}\right] + k_2 \left[\begin{array}{c} 0 \\ 1 \\ 3 \\ 5 \end{array}\right],即

[x1x2x3x4]=k1[1023]+k2[0135]\left[\begin{array}{c} x_1 & x_2 \\ x_3 & x_4 \end{array}\right] = k_1 \left[\begin{array}{c} 1 & 0 \\ 2 & 3 \end{array}\right] + k_2 \left[\begin{array}{c} 0 & 1 \\ 3 & 5 \end{array}\right]

dim(V1)=2dim(V_1)=2base(V1)=[[1023][0135]]base(V_1)=\left[\begin{array}{c} \left[\begin{array}{c} 1 & 0 \\ 2 & 3 \end{array}\right] & \left[\begin{array}{c} 0 & 1 \\ 3 & 5 \end{array}\right] \end{array}\right]

为直和即aa为何值时V1V2={0}V_1∩V_2=\{0\}

γ=x1[1023]+x2[0135]=x3[21a+21]+x4[124a+8]γ= x_1 \left[\begin{array}{c} 1 & 0 \\ 2 & 3 \end{array}\right] + x_2 \left[\begin{array}{c} 0 & 1 \\ 3 & 5 \end{array}\right] = x_3 \left[\begin{array}{c} 2 & -1 \\ a+2 & 1 \end{array}\right] + x_4 \left[\begin{array}{c} -1 & 2 \\ 4 & a+8 \end{array}\right]

[x12x3+x4x2+x32x42x1+3x2(a+2)x34x43x1+5x2x3(a+8)x4]=0\left[\begin{array}{c} x_1−2x_3+x_4 & x_2+x_3−2x_4 \\ 2x_1+3x_2−(a+2)x_3−4x_4 & 3x_1+5x_2−x_3−(a+8)x_4 \end{array}\right] = 0

{x12x3+x4=0x2+x32x4=02x1+3x2(a+2)x34x4=03x1+5x2x3(a+8)x4=0\begin{cases} x_1-2x_3+x_4=0 \\ x_2+x_3-2x_4=0 \\ 2x_1+3x_2−(a+2)x_3-4x_4=0 \\ 3x_1+5x_2-x_3-(a+8)x_4=0 \end{cases}

[1021011223a24351a8][x1x2x3x4]=Ax=0\left[\begin{array}{c} 1 & 0 & -2 & 1 \\ 0 & 1 & 1 & -2 \\ 2 & 3 & -a-2 & -4 \\ 3 & 5 & -1 & -a-8 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}\right] = Ax = 0

则当r(A)=4      A0      Ar(A)=4 { \ \ \ ⇔ \ \ \ } |A|≠0 { \ \ \ ⇔ \ \ \ } A可逆时V1+V2V_1+V_2是直和。

[1021011223a24351a8]初等行变换[1021011200a10000a1]\left[\begin{array}{c} 1 & 0 & -2 & 1 \\ 0 & 1 & 1 & -2 \\ 2 & 3 & -a-2 & -4 \\ 3 & 5 & -1 & -a-8 \end{array}\right] \xrightarrow[]{初等行变换} \left[\begin{array}{c} 1&0&-2&1 \\ 0&1&1&-2 \\ 0&0&-a-1&0 \\ 0&0&0&-a-1 \end{array}\right]

a1a≠-1时,r(A)=4r(A)=4,是直和
a=1a=-1时,r(A)=2r(A)=2,(选取x3,x4x_3,x_4为自由变量)

γ=x3[2111]+x4[1247]γ= x_3 \left[\begin{array}{c} 2 & -1 \\ 1 & 1 \end{array}\right] + x_4 \left[\begin{array}{c} -1 & 2 \\ 4 & 7 \end{array}\right]

dim(V1V2)=2dim(V_1∩V_2)=2base(V1V2)=[[2111][1247]]base(V_1∩V_2)=\left[\begin{array}{c} \left[\begin{array}{c} 2 & -1 \\ 1 & 1 \end{array}\right] & \left[\begin{array}{c} -1 & 2 \\ 4 & 7 \end{array}\right] \end{array}\right]

例2

Rn×nR^{n×n}的两个子空间,S1={A  AT=A}S_1 = \{ A \bold{\ |\ } A^T=A \}S2={A  AT=A}S_2 = \{ A \bold{\ |\ } A^T=-A \}

(1)证明Rn×n=S1S2R^{n×n}=S_1⊕S_2
(2)当n=3n=3时,求S1S_1的一组基及dim(S2)dim(S_2)

证明

(1)

对于矩阵AA,若AS1A∈S_1AS2A∈S_2

{AT=AAT=A      A=A      A=0n×n\begin{cases} A^T=A \\ A^T=-A \end{cases} { \ \ \ ⇒ \ \ \ } A = -A { \ \ \ ⇒ \ \ \ } A = 0_{n×n}

S1S2={0}S_1∩S_2 = \{0\}(保证了直和)

dim(S1)=1+2++(n1)+ndim(S_1) = 1 + 2 + \dots + (n-1) + n
dim(S2)=1+2++(n1)dim(S_2) = 1 + 2 + \dots + (n-1)
dim(S1+S2)=dim(S1)+dim(S2)=n(n1)+n=n2=dim(Rn×n)dim(S_1 + S_2) = dim(S_1) + dim(S_2) = n(n-1) + n = n^2 = dim(R^{n×n})

对任意矩阵AA,令B=A+AT2B=\dfrac{A+A^T}{2}C=AAT2C=\dfrac{A-A^T}{2},则

A=B+C(BS1,CS2)\begin{matrix} A=B+C & (B∈S_1,C∈S_2) \end{matrix}

因此Rn×nS1+S2R^{n×n} ⊆ S_1+S_2,反之亦然Rn×nS1+S2R^{n×n} ⊇ S_1+S_2(保证了相等)。

即得Rn×n=S1S2R^{n×n}=S_1⊕S_2

(2)

AS1A∈S_1

A=a11[100000000]+a22[000010000]+a33[000000001]+a12[010100000]+a13[001000100]+a23[000001010]A = \begin{array}{c} a_{11} \left[\begin{array}{c} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right]+ a_{22} \left[\begin{array}{c} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right]+ a_{33} \left[\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right] \\ + \\ a_{12} \left[\begin{array}{c} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right]+ a_{13} \left[\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right]+ a_{23} \left[\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right] \end{array}

明显dim(S1)=6dim(S_1) = 6

dim(S2)=dim(R3×3)dim(S1)=96=3dim(S_2) = dim(R^{3×3}) - dim(S_1) = 9 - 6 = 3